

40G-QSFP-ER4 40Gb/s QSFP+ ER4 Optical Transceiver

Product Features

- Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-ER4 Standard
- QSFP+ MSA compliant
- Compliant with QDR/DDR Infiniband data rates
- Up to 11.2Gb/s data rateper wavelength
- 4 CWDM lanes MUX/DEMUX design
- Up to 40km transmission on single mode fiber (SMF)
- Operating case temperature: 0 to 70°C
- Maximum power consumption 3.5W
- LC duplex connector
- RoHS compliant

Applications

- 40GBASE-ER4 Ethernet Links
- InfinibandQDRandDDR interconnects
- Client-side 40G Telecom connections

This product is a transceiver module designed for 40km optical communication applications. The design is compliant to 40GBASE-ER4 of the IEEE 802.3ba standard. The module converts 4 inputs channels (ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Ordering Information

Part Number	Description
40G-QSFP-ER4	QSFP+ ER4 40km optical transceiver with full real-time digital diagnostic monitoring and pull tab

Regulatory Compliance

Feature	Standard	Performance
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022:2010, Class B	Compatible with standards
Electromagnetic susceptibility (EMS)	EN 55024:2010	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2	Compatible with Class I laser product

Functional Description

This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a driven 4-wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified first by a TIA and a post amplifier. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the HostVcc voltage on the Host board.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_S	-40	85	°C	
Operating Case Temperature	Top	0	70	°C	
Power Supply Voltage	V _{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	TH_{d}	3.8		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typica l	Max	Unit	Notes
Operating Case Temperature	Тор	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			10.3125		Gb/s	
Control Input Voltage High		2		V _{CC}	V	
Control Input Voltage Low		0		0.8	V	
Link Distance with G.652	D	0.002		40	km	

Electrical Characteristics

The following electrical characteristics are defined over the Recommended OperatingEnvironment unless otherwise specified.

Parameter	Test Point	Min	Typica l	Max	Unit	Notes
Power Consumption				3.5	W	
Supply Current	Icc			1.06	А	
Transceiver Power-on Initialization Time				2000	ms	1
	1	Fransmitter (each Lane)			
Single-ended Input Voltage Tolerance (Note 2)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing Threshold		50			mVpp	LOSA Threshold
Differential Input Voltage Swing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	ohm	
Differential Input Return Loss		See IE	EE 802.3ba 86	A.4.11	dB	10MHz-11.1GHz
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage (DDPWS) Tolerance		0.07			UI	
Eye Mask Coordinates {X1, X2, Y1, Y2}	sk Coordinates {X1, X2, Y1, 0.11, 0.31 95, 350				UI mV	Hit Ratio = 5×10^{-5}
		Receiver (ea	ch Lane)			
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common

AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss		See IEI	See IEEE 802.3ba 86A.4.2.1			10MHz-11.1GHz
Common Mode Output Return Loss		See IEI	EE 802.3ba 86	A.4.2.2	dB	10MHz-11.1GHz
Output Transition Time		28			Ps	20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates {X1, X2, Y1, Y2}		0.29, 0.5, 150, 425			UI mV	Hit Ratio = $5x10-5$

Notes:

1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum

recommended operating supply voltages to the time when the module is fully functional.

2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1264.5	1271	1277.5	nm	
Wavelength Assignment	L1	1284.5	1291	1297.5	nm	
wavelength Assignment	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
		Transmit	ter			
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	P _T			10.5	dBm	
Average Launch Power, each Lane	P _{AVG}	-2.7		4.5	dBm	
Optical Modulation Amplitude (OMA), each Lane	Рома	-0.3		5	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.7	dB	
Launch Power in OMA minus Transmitter		-0.5			dBm	
and Dispersion Penalty (TDP), each Lane						
TDP, each Lane	TDP			2.6	dB	
Extinction Ratio	ER	5.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	12dB reflection
OpticalReturnLossTolerance	TOL			20	dB	
TransmitterReflectance	R _T			-12	dB	
Transmitter Eye Mask Definition {X1, X2,		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				
X3, Y1, Y2, Y3} Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
		Receive	r			
Damage Threshold, each Lane	TH _d	3.8			dBm	2
Average Receive Power, each Lane		-19		-4.5	dBm	

SATE CO., LIMITED / Web: www.sateoptics.com / Tel: +86 755 83156349 / E-mail: sales@sateoptics.com

4

Receiver Reflectance	R _R			-26	dB	
Receive Power (OMA), each Lane				-4	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-19	dBm	3
Average receive power, each laneb (min)				-21.2	dBm	
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			7.5	dB	
LOS Assert	LOSA	-35			dBm	
LOS Deassert	LOSD			-23	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	$F_{\rm C}$			12.3	GHz	
Со	nditions of S	Stress Receiver 5)	• Sensitivity	Test (Note		
Vertical Eye Closure Penalty, each Lane			2.2		dB	4
Stressed Eye J2 Jitter, each Lane		Per OTL3.4, G.8251				
Stressed Eye J9 Jitter, each Lane		Per OTL3.4, G.8251			UI	

Notes:

1. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.

2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

3. Measured with conformance test signal at receiver input for $BER = 1 \times 10^{-12}$.

4. MVertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI Temp	-3	+3	°C	Over operating
	Divin_remp	-5	15	C	temperature range
Supply voltage monitor absolute error	DMI VCC	-0.1	+0.1	V	Over full operating
Suppry voltage monitor absolute error	Divin_vee	-0.1	10.1	v	range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	+2	dB	1
Channel Bias current monitor	DMI_Ibias_C	-10%	+10%	mA	
	h				
Channel TX power monitor absolute error	DMI_TX_Ch	-2	+2	dB	1

Notes:

1.Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/-3 dB total accuracy.

Failure	Rate (FITs) Prediction	: The ca	alculation for FIT	's prediction is based	on Telcordia SR-332 Issue 3	
Components	Description	Qty	Basic FIT	Total FITs	Basic FIT Data for	Total FITs
	(Model&Vendor)		Data for	(@60%CL,40oC)	Calculation(@90%CL,40oC)	(@90%CL,40oC)
			Calculation			
TOSA	DML Laser	4	99.3	397.20	102.5	410
ROSA	Receiver	4	46.4	185.60	47.6	190.4
IC	Micro controller	1	133.3	133.30	133.9	133.9
IC	LD Driver	1	125.3	125.30	125.8	125.8
IC	DC-DC	1	14.76	14.76	14.84	14.84
IC	MOSFET	1	134	134.00	134.6	134.6
Inductors	Power Inductors	16	0.1	1.60	0.97	15.52
Inductors	Chip Inductors	4	2.3	9.20	2.34	9.36
capacitors	Ceramic chip capacitors	86	0.2	17.20	0.23	19.78
Resistors	Thick film resistors	47	0.23	10.81	0.26	12.22
	Total(H)			1028.97		1066.42
	MTBF(H)			971845.63		937716.85

EEPROM Definitions

Lower Memory Map

Byte	Bit	Name		Description
0	7:0	reserved	R	
1	7:0	reserved		
	7:3	reserved		
	2	0= paging 1= page 0 only	R	Upper memory flat or paged
2	1	IntL	R	Digital state of the IntL Interrupt output pin
	0	1: data not ready	R	Indicates Module has not yet achieved power up and memory data is not ready. Bit remains high until data is ready to be read at which time the device sets the bit low
	7	L-Tx4 LOS	0	Latched TX LOS indicator, channel 4
	6	L-Tx3 LOS	0	Latched TX LOS indicator, channel 3
	5	L-Tx2 LOS	0	Latched TX LOS indicator, channel 2
3	4	L-Tx1 LOS	0	Latched TX LOS indicator, channel 1
0	3	L-Rx4 LOS	0	Latched RX LOS indicator, channel 4
	2	L-Rx3 LOS	0	Latched RX LOS indicator, channel 3
	1	L-Rx2 LOS	0	Latched RX LOS indicator, channel 2
	0	L-Rx1 LOS	0	Latched RX LOS indicator, channel 1
	7-4	Reserved		
4	3	L-Tx4 Fault	R	Latched TX fault indicator, channel 4
	2	L-Tx3 Fault	R	Latched TX fault indicator, channel 3

oper				
	1	L-Tx2 Fault	R	Latched TX fault indicator, channel 2
	0	L-Tx1 Fault	R	Latched TX fault indicator, channel 1
5	7:0	reserved		
	7	L-Temp High Alarm	R	Latched high temperature alarm
	6	L-Temp Low Alarm	0	Latched low temperature alarm
	5	L-Temp High Warning	0	Latched high temperature warning
6	4	L-Temp Low Warning	0	Latched low temperature warning
	3-1	reserved		
	0	Initialization complete	0	Asserted (one) after initialization and/or reset has
	0	flag		completed. Returns to Zero when read
-	7	L-Vcc High Alarm	0	Latched high supply voltage alarm
-	6	L-Vcc Low Alarm	0	Latched low supply voltage alarm
7	5	L-Vcc High Warning	0	Latched high supply voltage warning
	4	L-Vcc Low Warning	0	Latched low supply voltage warning
	3-0	reserved		
8	7-0	Vendor Specific		
	7	L-Rx1 Power High Alarm	0	Latched high RX power alarm, channel 1
	6	L-Rx1 Power Low Alarm	0	Latched low RX power alarm, channel 1
	5	L-Rx1 Power High Warning	0	Latched high RX power warning, channel 1
9	4	L-Rx1 Power Low Warning	0	Latched low RX power warning, channel 1
	3	L-Rx2 Power High Alarm	0	Latched high RX power alarm, channel 2
	2	L-Rx2 Power Low Alarm	0	Latched low RX power alarm, channel 2
	1	L-Rx2 Power High Warning	0	Latched high RX power warning, channel 2
	0	L-Rx2 Power Low Warning	0	Latched low RX power warning, channel 2
	7	L-Rx3 Power High Alarm	0	Latched high RX power alarm, channel 3
	6	L-Rx3 Power Low Alarm	0	Latched low RX power alarm, channel 3
-	5	L-Rx3 Power High Warning	0	Latched high RX power warning, channel 3
10	4	L-Rx3 Power Low Warning	0	Latched low RX power warning, channel 3
-	3	L-Rx4 Power High Alarm	0	Latched high RX power alarm, channel 4
	2	L-Rx4 Power Low Alarm	0	Latched low RX power alarm, channel 4
	1	L-Rx4 Power High Warning	0	Latched high RX power warning, channel 4
	0	L-Rx4 Power Low Warning	0	Latched low RX power warning, channel 4
-	7	L-Tx1 Bias High Alarm	0	Latched high TX bias alarm, channel 1
	6	L-Tx1 Bias Low Alarm	0	Latched low TX bias alarm, channel 1
	5	L-Tx1 Bias high Warning	0	Latched high TX bias warning, channel 1
11	4	L-Tx1 Bias Low Warning	0	Latched low TX bias warning, channel 1
	3	L-Tx2 Bias High Alarm	0	Latched high TX bias alarm, channel 2
	2	L-Tx2 Bias Low Alarm	0	Latched low TX bias alarm, channel 2
	1	L-Tx2 Bias high Warning	0	Latched high TX bias warning, channel 2
	0	L-Tx2 Bias Low Warning	0	Latched low TX bias warning, channel 2
	7	L-Tx3 Bias High Alarm	0	Latched high TX bias alarm, channel 3
	6	L-Tx3 Bias Low Alarm	0	Latched low TX bias alarm, channel 3
	5	L-Tx3 Bias high Warning	0	Latched high TX bias warning, channel 3
12	4	L-Tx3 Bias Low Warning	0	Latched low TX bias warning, channel 3
	3	L-Tx4 Bias High Alarm	0	Latched high TX bias alarm, channel 4
	2	L-Tx4 Bias Low Alarm	0	Latched low TX bias alarm, channel 4

	1	L-Tx4 Bias high Warning	0	Latched high TX bias warning, channel 4				
	0	L-Tx4 Bias Low Warning	0	Latched low TX bias warning, channel 4				
	7	L-Tx1 Power High Alarm	0	Latched high TX power alarm, channel 1				
	6	L-Tx1 Power Low Alarm	0	Latched low TX power alarm, channel 1				
	5	L-Tx1 Power High Warning	0	Latched high TX power warning, channel 1				
13	4	L-Tx1 Power Low Warning	0	Latched low TX power warning, channel 1				
15	3	L-Tx2 Power High Alarm	0	Latched high TX power alarm, channel 2				
	2	L-Tx2 Power Low Alarm	0	Latched low TX power alarm, channel 2				
	1	L-Tx2 Power High Warning	0	Latched high TX power warning, channel 2				
	0	L-Tx2 Power Low Warning	0	Latched low TX power warning, channel 2				
	7	L-Tx3 Power High Alarm	0	Latched high TX power alarm, channel 3				
	6	L-Tx3 Power Low Alarm	0	Latched low TX power alarm, channel 3				
	5	L-Tx3 Power High Warning	0	Latched high TX power warning, channel 3				
14	4	L-Tx3 Power Low Warning	0	Latched low TX power warning, channel 3				
14	3	L-Tx4 Power High Alarm	0	Latched high TX power alarm, channel 4				
	2	L-Tx4 Power Low Alarm	0	Latched low TX power alarm, channel 4				
	1	L-Tx4 Power High Warning	0	Latched high TX power warning, channel 4				
	0	L-Tx4 Power Low Warning	0	Latched low TX power warning, channel 4				
15-16	7-0	reserved		Reserved channel monitor flags, set 4				
17-18	7-0	reserved		Reserved channel monitor flags, set 5				
19-21	7-0	Vendor Specific						
22	7-0	Temperature MSB	R					
23	7-0	Temperature LSB	R	Internally measured module temperature				
24-25	7-0	reserved						
26	7-0	Supply Voltage MSB	0					
27	7-0	Supply Voltage LSB	0	Internally measured module supply voltage				
28-29	7-0	reserved						
30-33	7-0	Vendor Specific						
34	7-0	Rx1 Power MSB	0					
35	7-0	Rx1 Power LSB	0	Internally measured RX input power, channel 1				
36	7-0	Rx2 Power MSB	0	Internally measured RX input power, channel 2				
37	7-0	Rx2 Power LSB	0	Internally measured KX input power, channel 2				
38	7-0	Rx3 Power MSB	0					
39	7-0	Rx3 Power LSB	0	Internally measured RX input power, channel 3				
40	7-0	Rx4 Power MSB	0	Leterrelle meeter IDV's to 1 1 1				
41	7-0	Rx4 Power LSB	0	Internally measured RX input power, channel 4				
42	7-0	Tx1 Bias MSB	0					
43	7-0	Tx1 Bias LSB	0	Internally measured TX bias, channel 1				
44	7-0	Tx2 Bias MSB	0					
45	7-0	Tx2 Bias LSB	0	Internally measured TX bias, channel 2				
46	7-0	Tx3 Bias MSB	0					
47	7-0	Tx3 Bias LSB	0	Internally measured TX bias, channel 3				
19	7.0	Tx4 Bias MSB	0					
48	7-0			Internally measured TX bias, channel 4				
48	7-0	Tx4 Bias LSB	0	Internally measured 1X bias, channel 4				
			0	Internally measured TX bias, channel 4 Internally measured TX power, channel 1				

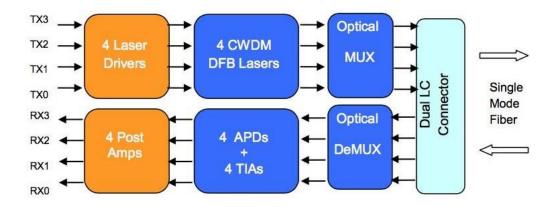
8

oper					
52	7-0	Tx2 Power MSB	0		
53	7-0	0 Tx2 Power LSB		Internally measured TX power, channel 2	
54	7-0	Tx3 Power MSB	0		
55	7-0	Tx3 Power LSB	0	Internally measured TX power, channel 3	
56	7-0	Tx4 Power MSB	0		
57	7-0	Tx4 Power LSB O		Internally measured TX power, channel 4	
58-65	7-0	Reserved		Reserved channel monitor set 4	
66-81	7-0	Vendor Specific		Vendor Specific	
82-85	7-0	Reserved			
	7-4	Reserved			
	3	Tx4 Disable	R		
86	2	Tx3 Disable	R	Read/Write bit that allows software disable of	
	1	Tx2 Disable	R	transmitters	
	0	Tx1 Disable	R	1: disables the laser of the channel	
	7-6	Rx4 Rate select	0	Software rate select. Rx Channel 4 MSB/LSB	
07	5-4	Rx3 Rate select	0	Software rate select. Rx Channel 3 MSB/LSB	
87	3-2	Rx2 Rate select	0	Software rate select. Rx Channel 2 MSB/LSB	
	1-0	Rx1 Rate select	0	Software rate select. Rx Channel 1 MSB/LSB	
	7-6	Tx4 Rate select	0	Software rate select. Tx Channel 4 MSB/LSB	
0.0	5-4	Tx3 Rate select	0	Software rate select. Tx Channel 3 MSB/LSB	
88	3-2	Tx2 Rate select	0	Software rate select. Tx Channel 2 MSB/LSB	
	1-0	Tx1 Rate select	0	Software rate select. Tx Channel 1 MSB/LSB	
				Software Application Select per SFF-8078, Rx	
89	7-0	Rx4_Application_Select	0	Channel 4	
		Rx3_Application_Select		Software Application Select per SFF-8078, Rx	
90	7-0		0	Channel 3	
	7-0	Rx2_Application_Select		Software Application Select per SFF-8078, Rx	
91			0	Channel 2	
02				Software Application Select per SFF-8078, Rx	
92	7-0	Rx1_Application_Select	0	Channel 1	
	7-2	Reserved			
	1	Power set	R	Power set to Low Power Mode Default 0	
90		Power override		Override LP mode signal; power mode set via	
	0		R	software;	
				Default 0	
94	7-0	Tx4_Application_Select	0	Software application per SFF-8079, Tx Channel 4	
95	7-0	Tx3_Application_Select	0	Software application per SFF-8079, Tx Channel 3	
96	7-0	Tx2_Application_Select	O Software application per SFF-8079, Tx Char		
97	7-0	Tx1_Application_Select	0	Software application per SFF-8079, Tx Channel 1	
98-99	7-0	Reserved			
	7	M-Tx4 LOS	C	Masking bit for TX LOS indicator, channel 4	
	6	M-Tx3 LOS	C	Masking bit for TX LOS indicator, channel 3	
	5	M-Tx2 LOS	C	Masking bit for TX LOS indicator, channel 2	
100	4	M-Tx1 LOS	C	Masking bit for TX LOS indicator, channel 1	
	3	M-Rx4 LOS		Masking bit for RX LOS indicator, channel 4	
	2	M-Rx3 LOS	C	Masking bit for RX LOS indicator, channel 3	

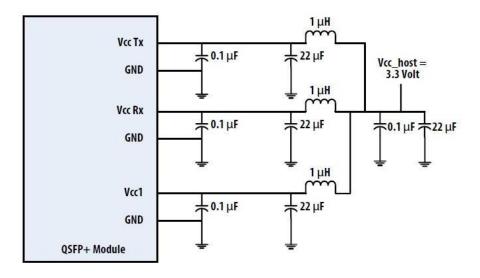
	1	M-Rx2 LOS	C	Masking bit for RX LOS indicator, channel 2		
	0	M-Rx1 LOS	C	Masking bit for RX LOS indicator, channel 1		
101	7-4	Reserved				
	3 M-Tx4 Fault F		R	Masking bit for TX fault indicator, channel 4		
	2 M-Tx3 Fault F		R	Masking bit for TX fault indicator, channel 3		
	1	M-Tx2 Fault	R	Masking bit for TX fault indicator, channel 2		
	0	M-Tx1 Fault		Masking bit for TX fault indicator, channel 1		
102	7-0	Reserved				
	7	M-Temp High Alarm	C	Masking bit for high Temperature alarm		
	6	M-Temp Low Alarm	C	Masking bit for low Temperature alarm		
	5	M- Temp High Warning	C	Masking bit for high Temperature warning		
103	4	M-Temp Low Warning	C	Masking bit for low Temperature warning		
	3-1	Reserved				
		M-Initialization complete		Masking bit for initialization complete flag		
	0	flag	C	Masking on for initialization complete hag		
	7	M-Vcc High alarm	C	Masking bit for high Vcc alarm		
	6	M-Vcc Low alarm	C	Masking bit for low Vcc alarm		
104	5	M-Vcc High Warning	C	C Masking bit for high Vcc warning		
	4	M-Vcc Low Warning		Masking bit for low Vcc warning		
	3-0	Reserved				
105-106	7-0	Vendor Specific				
107-118	7-0	Reserved				
119-122	7-0	Password Change Entry	C	Password Change Entry Area (optional) (4 Bytes)		
123-126	7-0	Password Entry Area	C	Password Entry Area (optional) 4 Bytes		
127	7-0	Page Select Byte	R			

Upper Page 00h

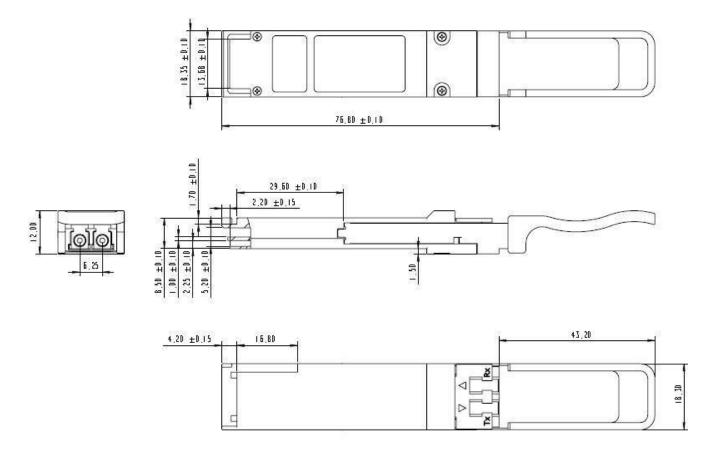
Byte	Name		Description
128	Identifier	R	Identifier Type of serial Module
129	Ext Identifier	R	Extended Identifier of Serial Module
130	Connector	R	Code for connector type
	Specification		Code for electronic compatibility or optical
131-138	compliance	R	compatibility
139	Encoding	R	Code for serial encoding algorithm
140	BR, nominal	R	Nominal bit rate, units of 100 MBits/s
141	Extended rateselect Compliance	R	Tags for extended rate select compliance
142	Length(SMF)		Link length supported for SMF fiber in km
143	Length(OM3 50um)	R	Link length supported for EBW 50/125 um fiber (OM3),units of 2m
144	Length(OM2 50um)		Link length supported for 50/125 um fiber (OM2), units of 1m
145	Length(OM1 62.5 um)	R	Link length supported for 62.5/125 um fiber (OM1),units of 1m



146	Length (Copper)	R	Link length of copper or active cable, units of 1 m Link length supported for 50/125 um fiber (OM4), units of 2 m) when Byte 147
			declares 850 nm VCSEL as defined in
147	Device tech	R	Device technology
148-163	Vendor name	R	QSFP+ vendor name
164	Extended Module	R	Extended Module codes for InfiniBand
165-167	Vendor OUI	R	QSFP+ vendor IEEE company ID
168-183	Vendor PN	R	Part number provided by QSFP+ vendor
184-185	Vendor rev	R	Revision level for part number provided by vendor
186-187	Wave length or Copper cable Attenuation	R	Nominal laser wavelength (wavelength=value/20 in nm) or copper cable attenuation in dB at 2.5GHz (Adrs 186) and 5.0GHz (Adrs 187)
188-189	Wavelength tolerance	R	Guaranteed range of laser wavelength(+/- value) from nominal wavelength.(wavelength Tol.=value/200 in nm)
190	Max case temp	R	Maximum case temperature in degrees C
191	CC_BASE	R	Check code for base ID fields (addresses 128-190)
192-195	Options	R	Rate Select, TX Disable,TX Fault, LOS, Warning indicators for: Temperature, VCC, RX power, TX Bias
196-211	Vendor SN	R	Serial number provided by vendor
212-219	Date Code	R	Vendor's manufacturing date code
220	Diagnostic Monitoring Type	R	Indicates which types of diagnostic monitoring are implemented (if any) in the Module. Bit 1,0 Reserved
221	Enhanced Options	R	Indicates which optional enhanced features are implemented in the Module
222	Reserved		
223	CC_EXT	R	Check code for the Extended ID Fields (addresses 192-222)
224-255	Vendor Specific EEPROM		


O: optional R : required C: conditional upon another parameter which is optional

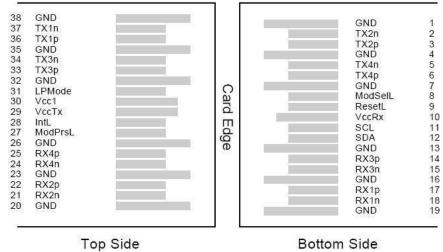
Block Diagram of Transceiver



Recommended Power Supply Filter

Mechanical Dimensions

ESD


This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Pin Assignment and Description

Viewed from Top

Bottom Side Viewed from Bottom

Pin Assignment

PIN #	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1

27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and VccTx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.